SCHLUMBERGER LOG INTERPRETATION / PRINCIPLES

ITARY ALS		MINERAL	COMPOSITION	Apparent Log Density	Average ∆t	φ _N * (GNT) p.υ.	γ-Ray Deflection (APIU)	Apparent K ₂ O%
SEDIMEN	SEUIMENIAKT MINERALS	Calcite	CaCO₃	2.710	47.5	0	0	-
		Dolomite	CaMg (CO ₃) ₂	2.876	43.5	4	0	_
		Quartz	SiO ₂	2.648	55.5	-4	0	-
	SEDIMENTARY FORMATIONS	Limestone	(e.g., when $\phi = 10\%$)	2.540	62	10	5-10	0
		Dolomite	(e.g., when $\phi = 10\%$)	2.683	58	13.5	10-20	0
		Sandstone	(e.g., when $\phi = 10\%$)	2.485	65.3	3	10-30	0
		Shale		2.2-2.75	70-150	25-60	80-140	2-10
	NON- RADIOACTIVE	Halite	NaCl	2.032	67	0	0	· _
		Anhydrite	CαSO₄	2.977	50	0	0	_
		Gypsum	CaSO₄ • 2H₂O	2.351	52.5	49	0	—
TES		Trona	Na ₂ CO ₃ • NaHCO ₃ • 2H ₂ O	2.100	65	40	0	-
EVAPORITES	RADIOACTIVE	Sylvite	ксі	1.863	74	0	~500	63.0
EVA		Carnallite	KCI • MgCl ₂ • 6H ₂ O	1.570	78	65	200	17.0
		Langbeinite	K₂SO₄ • 2MgSO₄	2.820	52	0	275	22.6
		Polyhalite	$K_2SO_4 \cdot MgSO_4 \cdot 2CaSO_4 \cdot 2H_2O$	2.790	57.5	15	180	15.5
		Kainite	MgSO₄ • KCl • 3H₂O	2.120	–	45	225	18.9
	OTHER MINERALS	Sulfur**		2.030	122.0	< <u>0</u> (15.5")	0	
		Lignite		0.7-1.5	140-170	15	0	
		Bituminous Coal		1.3-1.5	110-140	←High→ Greater than 50%	0	
	-	Anthracite Co	al	1.4-1.8	1	Ţ₽ <u></u> ₽,	0	

TABLE 18-1

* ϕ_N = Apparent Limestone Porosity from a Neutron Log.

** $\phi_{\text{SNP (sulfur)}} = 0.$

Data from Reference 10.

NON-RADIOACTIVE EVAPORITES

Bedded evaporites are essentially nonporous and electrically nonconductive. Thus, they are characterized by extremely high readings on resistivity logs. Some evaporites are quite soluble in water-base drilling muds and lead to enlarged holes, so a caliper log is an important part of the logging program.

Since evaporite beds have little or no porosity, but do have characteristic responses on the porosity logs (Table 18-1), a single porosity log — Sonic, Density, or Neutron will often provide identification.

When evaporite beds contain mixtures of minerals, or are intercalated in sedimentary rocks, several logs (Sonic, Gamma Ray, Neutron, Density) may be used in a solution involving linear simultaneous equations. (See Tri-Porosity method, Vol. II.) Such computations are generally done on computers. A crossplot of two porosity logs may be used for identification of a mixture of two minerals. Fig. 18-2 is a Sonic-Neutron crossplot showing the positions of several non-radioactive minerals.

RADIOACTIVE EVAPORITES

Radioactive evaporites of commercial interest include the potash minerals. Their radioactivity comes from the potassium isotope, K^{40} , which constitutes a constant fraction of naturally occurring potassium.

For effective evaluation of potash deposits the logs must identify the potash minerals (some of which are more valuable than others) and determine the fractions if a mixture is present.

Fig. 18-3 shows how a crossplot of Gamma Ray and Density Log data can identify the various pure potash minerals. When the bed consists of a mixture of only two potash minerals the crossplot can often identify them and give the mineral fractions, because the point falls on a line joining the two mineral points.

For use in potash interpretation, the Gamma Ray reading is converted to "apparent K_2O content" by means of an empirically established relationship (Fig. 18-4). The K_2O value obtained from the Gamma Ray is used in complex

Special Purpose Devices and Services / 18

lithologies to solve for potash by means of linear simultaneous equations.

SULFUR

Sulfur usually occurs as an infilling in the pore structure of limestone, some of the pore space being water-filled. Such deposits are conveniently located by an overlay of Density and Neutron logs (Chapter I-12). Where only limestone is present, the two curves coincide. Sulfur is indicated by a divergence of the curves, the Density Log indicating the higher porosity. (The response of the SNP Neutron Log to sulfur is the same as to non-porous limestone; it therefore reads only liquid-filled porosity.)

The bulk-volume fraction, S, of sulfur in a limestone matrix can be determined from the equation

$$S = \frac{\phi_{\rm D} - \phi_{\rm SNP}}{.4} \quad (\text{for } \boldsymbol{\rho}_{\rm f} = 1.0) \tag{18-1}$$

If a Sonic Log is available instead of a Density Log, or if a GNT type or CNL Neutron Log is run instead of the SNP, variations of the above equation are used.⁽¹⁰⁾

A resistivity log and a Sonic or Density Log may be used for sulfur evaluation if only sulfur, limestone, and water are present, and if R_w is known. Porosity is computed from the resistivity of the water-saturated formation:

$$\phi = \sqrt{\frac{R_{\pi}}{R_o}}$$
(18-2)

Fig. 18-3 — Crossplot of bulk density and appar-. ent K₂O content (from Fig. 18-4) identifies potash minerals. (Courtesy SPWLA, Ref. 10)

Log deflection and apparent potassium content. (Courtesy SPWLA, Ref. 10)

This value of porosity is used in Eq. 18-1 to obtain the bulk-volume fraction of sulfur.

The methods of sulfur evaluation discussed above are valid only for the simple limestone-sulfur-water combination. The problem is complicated by mineral mixtures or gas saturation. For example, either gas saturation or salt can give the same log response as a rich sulfur deposit. Complex lithologies again require the use of the Tri-Porosity method (Vol. II).